Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238903

RESUMO

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Assuntos
Cálcio , Magnésio , Cálcio/metabolismo , Magnésio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Transporte de Íons , RNA/análise , Túbulos Renais Distais/metabolismo
2.
FASEB J ; 37(4): e22834, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961378

RESUMO

The kidney regulates blood pressure through salt/water reabsorption affected by tubular sodium transporters. Expanding our prior research on placental cluster of differentiation 81 (CD81), this study explores the interaction of renal CD81 with sodium transporters in preeclampsia (PE). Effects of renal CD81 with sodium transporters were determined in lipopolysaccharide (LPS)-induced PE rats and immortalized mouse renal distal convoluted tubule cells. Urinary exosomal CD81, sodium potassium 2 chloride cotransporter (NKCC2), and sodium chloride cotransporter (NCC) were measured in PE patients. LPS-PE rats had hypertension from gestational days (GD) 6 to 18 and proteinuria from GD9 to GD18. Urinary CD81 in both groups tented to rise during pregnancy. Renal CD81, not sodium transporters, was higher in LPS-PE than controls on GD14. On GD18, LPS-PE rats exhibited higher CD81 in kidneys and urine exosomes, higher renal total and phosphorylated renal NKCC2 and NCC with elevated mRNAs, and lower ubiquitinated NCC than controls. CD81 was co-immunoprecipitated with NKCC2 or NCC in kidney homogenates and co-immunostained with NKCC2 or NCC in apical membranes of renal tubules. In plasma membrane fractions, LPS-PE rats had greater amounts of CD81, NKCC2, and NCC than controls with enhanced co-immunoprecipitations of CD81 with NKCC2 or NCC. In renal distal convoluted tubule cells, silencing CD81 with siRNA inhibited NCC and prevented LPS-induced NCC elevation. Further, PE patients had higher CD81 in original urines, urine exosomes and higher NKCC2 and NCC in urine exosomes than controls. Thus, the upregulation of renal CD81 on NKCC2 and NCC may contribute to the sustained hypertension observed in LPS-PE model. Urine CD81 with NKCC2 and NCC may be used as biomarkers for PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Camundongos , Humanos , Ratos , Feminino , Animais , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Cloretos/metabolismo , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Placenta/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Sódio/metabolismo , Potássio/metabolismo , Tetraspanina 28/metabolismo
3.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719746

RESUMO

Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.


Assuntos
Potássio na Dieta , Simportadores de Cloreto de Sódio , Camundongos , Animais , Pressão Sanguínea , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Tiazidas , Suplementos Nutricionais
4.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288902

RESUMO

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Assuntos
Glicosúria , Simportadores de Cloreto de Sódio , Humanos , Camundongos , Animais , Simportadores de Cloreto de Sódio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Glucose/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Fosforilação , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Glicosúria/metabolismo
5.
J Hum Hypertens ; 37(7): 524-531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35978099

RESUMO

Urinary extracellular vesicles (UEV) mainly derive from cells of the urogenital tract and their cargo (proteins, nucleic acids, lipids, etc.) reflects their cells of origin. Na chloride cotransporter (NCC) is expressed at the kidney level in the distal convoluted tubule, is involved in salt reabsorption, and is the target of the diuretic thiazides. NCC protein has been recognized and quantified in UEV in previous studies; however, UEV NCC mRNA has never been studied. This study aimed to identify and analyze NCC mRNA levels in primary aldosteronism (PA). The rationale for this investigation stems from previous observations regarding NCC (protein) as a possible biomarker for the diagnosis of PA. To evaluate modulations in the expression of NCC, we analyzed NCC mRNA levels in UEV in PA and essential hypertensive (EH) patients under different conditions, that is, before and after saline infusion, anti-aldosterone pharmacological treatment, and adrenal surgery. NCC mRNA was measured by RT-qPCR in all the samples and was regulated by volume expansion. Its response to mineralocorticoid receptor antagonist was correlated with renin, and it was increased in PA patients after adrenalectomy. NCC mRNA is evaluable in UEV and it can provide insights into the pathophysiology of distal convolute tubule in different clinical conditions including PA.


Assuntos
Vesículas Extracelulares , Hipertensão , Humanos , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Sódio/metabolismo , Túbulos Renais Distais
6.
Kidney Int ; 102(5): 956-958, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36272750

RESUMO

The potassium switch refers to plasma potassium regulation of the sodium-chloride cotransporter (NCC), which controls distal sodium delivery and therefore potassium secretion. Low extracellular potassium activates NCC by relieving chloride inhibition of With-No-Lysine 4 (WNK4). A new mouse model carrying a chloride-insensitive WNK4 mutant still shows NCC activation on low potassium diet. These effects are mediated by WNK4 activation and kelch-like 3 (KLHL3) inhibition and reveal additional chloride-sensitive pathways for NCC activation.


Assuntos
Cloretos , Potássio , Camundongos , Animais , Potássio/metabolismo , Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
7.
PLoS One ; 17(9): e0273313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129874

RESUMO

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Assuntos
Produtos do Gene vpr , HIV-1 , Aldosterona/metabolismo , Aldosterona/farmacologia , Animais , Chlorocebus aethiops , Produtos do Gene vpr/metabolismo , HIV-1/genética , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoenolpiruvato , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas
8.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870644

RESUMO

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Assuntos
Hipopotassemia , Simportadores de Cloreto de Sódio , Animais , Humanos , Camundongos , Cloretos/metabolismo , Células HEK293 , Hipopotassemia/genética , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo
9.
Am J Physiol Cell Physiol ; 323(2): C385-C399, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759442

RESUMO

The thiazide-sensitive Na+-Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCα is located in the kidney and eNCCß, which is present in the apical membrane of the rectum. Interestingly, the European eNCCß functions as a Na+-Cl- cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCß and jNCCß are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCß into jNCCß. Our data showed that jNCCß, similar to eNCCß, is resistant to thiazides. In addition, both NCCß proteins have high transport capacity with respect to their renal NCC orthologs and, in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G, or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCß proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl-, and site I172 is important for the function of NCCß.


Assuntos
Cloretos , Inibidores de Simportadores de Cloreto de Sódio , Animais , Cloretos/metabolismo , Enguias/metabolismo , Mamíferos/metabolismo , Cloreto de Sódio , Inibidores de Simportadores de Cloreto de Sódio/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Tiazidas/farmacologia
10.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430873

RESUMO

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Modelos Animais de Doenças , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/patologia , Camundongos , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta
11.
Front Endocrinol (Lausanne) ; 13: 834409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444613

RESUMO

Background: Adrenal venous sampling (AVS) is recognized as the gold standard for subtyping primary aldosteronism (PA), but its invasive nature and technical challenges limit its availability. A recent study reported that sodium chloride cotransporter (NCC) in urinary extracellular vesicles (uEVs) is a promising marker for assessing the biological activity of aldosterone and can be treated as a potential biomarker of PA. The current study was conducted to verify the hypothesis that the expression of NCC and its phosphorylated form (pNCC) in uEVs are different in various subtypes and genotypes of PA and can be used to select AVS candidates. Methods: A total of 50 patients with PA were enrolled in the study. Urinary extracellular vesicles (uEVs) were isolated from spot urine samples using ultracentrifugation. NCC and pNCC expressions were tested in patients diagnosed with PA who underwent AVS. Sanger sequencing of KCNJ5 was performed on DNA extracted from adrenal adenoma. Results: pNCC (1.89 folds, P<.0001) and NCC (1.82 folds, P=0.0002) was more abundant in the uEVs in the high lateralization index (h-LI, ≥ 4) group than in the low LI (l-LI, < 4) group. Carriers of the somatic KCNJ5 mutations, compared with non-carriers, had more abundant pNCC expression (2.16 folds, P=0.0039). Positive correlation between pNCC abundance and plasma aldosterone level was found in this study (R = 0.1220, P = 0.0129). Conclusions: The expression of pNCC in uEVs in patients with PA with various subtypes and genotypes was different. It can be used as biomarker of AVS for PA subtyping.


Assuntos
Vesículas Extracelulares , Hiperaldosteronismo , Aldosterona/metabolismo , Biomarcadores/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Humanos , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/metabolismo , Simportadores de Cloreto de Sódio/metabolismo
12.
Kidney Int ; 100(2): 321-335, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33940111

RESUMO

The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the ß2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to ß1-adrenergic receptors, the ß2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 µM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, ß2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.


Assuntos
Albuterol , Simportadores de Cloreto de Sódio , Agonistas Adrenérgicos/metabolismo , Albuterol/metabolismo , Albuterol/farmacologia , Animais , Pressão Sanguínea , Túbulos Renais Distais/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
13.
Am J Physiol Renal Physiol ; 320(6): F1045-F1058, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900854

RESUMO

High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Sódio na Dieta/administração & dosagem , Sódio na Dieta/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Simportadores de Cloreto de Sódio/genética
14.
Am J Physiol Renal Physiol ; 320(3): F378-F403, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491560

RESUMO

With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


Assuntos
Néfrons/metabolismo , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Animais , Humanos , Túbulos Renais Distais/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo
15.
Hypertension ; 77(2): 447-460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33390050

RESUMO

The thiazide-sensitive sodium-chloride cotransporter (NCC;SLC12A3) is central to sodium and blood pressure regulation. Metabolic syndrome induces NCC upregulation generating sodium-sensitive hypertension in experimental animal models. We tested the role of NCC in sodium sensitivity in hypertensive humans with metabolic syndrome. Conversely, oral potassium induces NCC downregulation producing potassium-induced natriuresis. We determined the time course and magnitude of potassium-induced natriuresis compared with the natriuresis following hydrochlorothiazide (HCTZ) as a reference standard. We studied 19 obese hypertensive humans with metabolic syndrome during 13-day inpatient confinement. We determined sodium sensitivity by change in 24-hour mean systolic pressure by automated monitor from days 5 (low sodium) to 10 (high sodium). We determined NCC activity by standard 50 mg HCTZ sensitivity test (day 11). We determined potassium-induced natriuresis following 35 mmol KCl (day 13). We determined (1) whether NCC activity was greater in sodium-sensitive versus sodium-resistant participants and correlated with sodium sensitivity and (2) time course and magnitude of potassium-induced natriuresis following 35 mmol KCl directly compared with 50 mg HCTZ. NCC activity was not greater in sodium-sensitive versus sodium-resistant humans and did not correlate with sodium sensitivity. Thirty-five-millimoles KCl produced a rapid natriuresis approximately half that of 50 mg HCTZ with a greater kaliuresis. Our investigation tested a key hypothesis regarding NCC activity in human hypertension and characterized potassium-induced natriuresis following 35 mmol KCl compared with 50 mg HCTZ. In obese hypertensive adults with metabolic syndrome ingesting a high-sodium diet, 35 mmol KCl had a net natriuretic effect approximately half that of 50 mg HCTZ.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Síndrome Metabólica/metabolismo , Natriurese/fisiologia , Simportadores de Cloreto de Sódio/metabolismo , Sódio/metabolismo , Adulto , Idoso , Pressão Sanguínea/efeitos dos fármacos , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Natriurese/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Sódio na Dieta
16.
Kidney Int ; 99(2): 350-363, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956652

RESUMO

NHA2 is a sodium/proton exchanger associated with arterial hypertension in humans, but the role of NHA2 in kidney function and blood pressure homeostasis is currently unknown. Here we show that NHA2 localizes almost exclusively to distal convoluted tubules in the kidney. NHA2 knock-out mice displayed reduced blood pressure, normocalcemic hypocalciuria and an attenuated response to the thiazide diuretic hydrochlorothiazide. Phosphorylation of the thiazide-sensitive sodium/chloride cotransporter NCC and its upstream activating kinase Ste20/SPS1-related proline/alanine rich kinase (SPAK), as well as the abundance of with no lysine kinase 4 (WNK4), were significantly reduced in the kidneys of NHA2 knock-out mice. In vitro experiments recapitulated these findings and revealed increased WNK4 ubiquitylation and enhanced proteasomal WNK4 degradation upon loss of NHA2. The effect of NHA2 on WNK4 stability was dependent from the ubiquitylation pathway protein Kelch-like 3 (KLHL3). More specifically, loss of NHA2 selectively attenuated KLHL3 phosphorylation and blunted protein kinase A- and protein kinase C-mediated decrease of WNK4 degradation. Phenotype analysis of NHA2/NCC double knock-out mice supported the notion that NHA2 affects blood pressure homeostasis by a kidney-specific and NCC-dependent mechanism. Thus, our data show that NHA2 as a critical component of the WNK4-NCC pathway and is a novel regulator of blood pressure homeostasis in the kidney.


Assuntos
Prótons , Sódio , Pressão Sanguínea , Rim/metabolismo , Fosforilação , Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
17.
Hypertension ; 76(5): 1461-1469, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981364

RESUMO

Increased sympathoexcitation and renal sodium retention during high salt intake are hallmarks of the salt sensitivity of blood pressure. The mechanism(s) by which excessive sympathetic nervous system release of norepinephrine influences renal sodium reabsorption is unclear. However, studies demonstrate that norepinephrine can stimulate the activity of the NCC (sodium chloride cotransporter) and promote the development of SSH (salt-sensitive hypertension). The adrenergic signaling pathways governing NCC activity remain a significant source of controversy with opposing studies suggesting a central role of upstream α1- and ß-adrenoceptors in the canonical regulatory pathway involving WNKs (with-no-lysine kinases), SPAK (STE20/SPS1-related proline alanine-rich kinase), and OxSR1 (oxidative stress response 1). In our previous study, α1-adrenoceptor antagonism in norepinephrine-infused male Sprague-Dawley rats prevented the development of norepinephrine-evoked SSH in part by suppressing NCC activity and expression. In these studies, we used selective adrenoceptor antagonism in male Dahl salt-sensitive rats to test the hypothesis that norepinephrine-mediated activation of the NCC in Dahl SSH occurs via an α1-adrenoceptor dependent pathway. A high-salt diet evoked significant increases in NCC activity, expression, and phosphorylation in Dahl salt-sensitive rats that developed SSH. Increases were associated with a dysfunctional WNK1/4 dynamic and a failure to suppress SPAK/OxSR1 activity. α1-adrenoceptor antagonism initiated before high-salt intake or following the establishment of SSH attenuated blood pressure in part by suppressing NCC activity, expression, and phosphorylation. Collectively, our findings support the existence of a norepinephrine-activated α1-adrenoceptor gated pathway that relies on WNK/SPAK/OxSR1 signaling to regulate NCC activity in SSH.


Assuntos
Regulação da Expressão Gênica , Hipertensão/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Sistema Nervoso Simpático/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Fosforilação/efeitos dos fármacos , Prazosina/análogos & derivados , Prazosina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Simportadores de Cloreto de Sódio/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
18.
Bioorg Med Chem Lett ; 30(17): 127408, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738993

RESUMO

We report here structural development of N-(4-phenoxyphenyl)benzamide derivatives as novel SPAK (STE20/SPS1-related proline/alanine-rich kinase) inhibitors. Abnormal activation of the signal cascade of with-no-lysine kinase (WNK) with OSR1 (oxidative stress-responsive kinase 1)/SPAK and NCC (NaCl cotransporter) results in characteristic salt-sensitive hypertension, and therefore inhibitors of the WNK-OSR1/SPAK-NCC cascade are candidates for antihypertensive drugs. Based on the structure of lead compound 2, we examined the SAR of N-(4-phenoxyphenyl)benzamide derivatives, and developed compound 20l as a potent SPAK inhibitor. Compounds 20l is a promising candidate for a new class of antihypertensive drugs.


Assuntos
Anti-Hipertensivos/química , Benzamidas/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Benzamidas/metabolismo , Benzamidas/farmacologia , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Relação Estrutura-Atividade , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
19.
Am J Physiol Renal Physiol ; 319(3): F534-F540, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715757

RESUMO

Cl--sensitive with-no-lysine kinase (WNK) plays a key role in regulating the thiazide-sensitive Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT). Cl- enters DCT cells through NCC and leaves the cell across the basolateral membrane via the Cl- channel ClC-K2 or K+-Cl- cotransporter (KCC). While KCC is electroneutral, Cl- exit via ClC-K2 is electrogenic. Therefore, an alteration in DCT basolateral K+ channel activity is expected to influence Cl- movement across the basolateral membrane. Although a role for intracellular Cl- in the regulation of WNK and NCC has been established, intracellular Cl- concentrations ([Cl-]i) have not been directly measured in the mammalian DCT. Therefore, to measure [Cl-]i in DCT cells, we generated a transgenic mouse model expressing an optogenetic kidney-specific Cl-Sensor and measured Cl- fluorescent imaging in the isolated DCT. Basal measurements indicated that the mean [Cl-]i was ~7 mM. Stimulation of Cl- exit with low-Cl- hypotonic solutions decreased [Cl-]i, whereas inhibition of KCC by DIOA or inhibition of ClC-K2 by NPPB increased [Cl-]i, suggesting roles for both KCC and ClC-K2 in the modulation of [Cl-]i . Blockade of basolateral K+ channels (Kir4.1/5.1) with barium significantly increased [Cl-]i. Finally, a decrease in extracellular K+ concentration transiently decreased [Cl-]i, whereas raising extracellular K+ transiently increased [Cl-]i, further suggesting a role for Kir4.1/5.1 in the regulation of [Cl-]i. We conclude that the alteration in ClC-K2, KCC, and Kir4.1/5.1 activity influences [Cl-]i in the DCT.


Assuntos
Cloretos/metabolismo , Túbulos Renais Distais/fisiologia , Canais de Potássio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Animais , Cloretos/química , Fenômenos Eletrofisiológicos , Camundongos , Imagem Molecular , Simportadores de Cloreto de Sódio/genética
20.
Am J Physiol Renal Physiol ; 319(3): F414-F422, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715760

RESUMO

We used patch-clamp and Western blot analysis to test whether PGF2α stimulates the basolateral 10-pS Cl- channel and thiazide-sensitive Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) via a prostaglandin F receptor (FP-R). Single channel and whole cell recordings demonstrated that PGF2α stimulated the 10-pS Cl- channel in the DCT. The stimulatory effect of PGF2α on the Cl- channel was mimicked by a FP-R agonist, latanoprost, but was abrogated by blocking FP-R with AL8810. Also, the effect of PGF2α on the Cl- channel in the DCT was recapitulated by stimulating PKC but was blocked by inhibiting PKC. Furthermore, inhibition of p38 MAPK but not ERK blocked the effect of PGF2α on the 10-pS Cl- channel. Inhibition of NADPH oxidase also abrogated the stimulatory effect of PGF2α on the 10-pS Cl- channel, while the addition of 10 µM H2O2 mimicked the stimulatory effect of PGF2α on the 10-pS Cl- channel. Moreover, superoxide-related species may mediate the stimulatory effect of PGF2α on the 10-pS Cl- channel because the stimulatory effect of PGF2α and H2O2 was not additive. Western blot analysis showed that infusion of PGF2α in vivo not only increased the expression of FP-R but also increased the expression of total NCC and phosphorylated NCC. We conclude that PGF2α stimulates the basolateral 10-pS Cl- channel in the DCT by activating FP-R through PKC/p38 MAPK and NADPH oxidase-dependent pathways. The stimulatory effects of PGF2α on the Cl- channel and NCC may contribute to PGF2α-induced increases in NaCl reabsorption in the DCT.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Canais de Cloreto/metabolismo , Dinoprosta/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Canais de Cloreto/genética , Feminino , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitócicos/farmacologia , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptores de Droga/genética , Simportadores de Cloreto de Sódio/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...